7 research outputs found

    Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

    Full text link
    Dynamic atomic force microscopy (AFM) modes that operate at frequencies far away from the resonance frequency of the cantilever (off-resonance tapping (ORT) modes) can provide high-resolution imaging of a wide range of sample types, including biological samples, soft polymers, and hard materials. These modes offer precise and stable control of vertical force, as well as reduced lateral force. Simultaneously, they enable mechanical property mapping of the sample. However, ORT modes have an intrinsic drawback: a low scan speed due to the limited ORT rate, generally in the low kHz range. Here, we analyze how the conventional ORT control method limits the topography tracking quality and hence the imaging speed. The closed-loop controller in conventional ORT restricts the sampling rate to the ORT rate and introduces a large closed-loop delay. We present an alternative ORT control method in which the closed-loop controller samples and tracks the vertical force changes during a defined time window of the tip-sample interaction. Through this, we use multiple samples in the proximity of the maximum force for the feedback loop, rather than only one sample at the maximum force instant. This method leads to improved topography tracking at a given ORT rate and therefore enables higher scan rates while refining the mechanical property mapping. Keywords: atomic force microscopy (AFM); off-resonance tapping (ORT); pulsed-force mode; feedback contro

    High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6

    Get PDF
    The self-assembly of protein complexes is at the core of many fundamental biological processes1, ranging from the polymerization of cytoskeletal elements, such as microtubules2, to viral capsid formation and organelle assembly3. To reach a comprehensive understanding of the underlying mechanisms of self-assembly, high spatial and temporal resolutions must be attained. This is complicated by the need to not interfere with the reaction during the measurement. As self-assemblies are often governed by weak interactions, they are especially difficult to monitor with high-speed atomic force microscopy (HS-AFM) due to the non-negligible tip–sample interaction forces involved in current methods. We have developed a HS-AFM technique, photothermal off-resonance tapping (PORT), which is gentle enough to monitor self-assembly reactions driven by weak interactions. We apply PORT to dissect the self-assembly reaction of SAS-6 proteins, which form a nine-fold radially symmetric ring-containing structure that seeds the formation of the centriole organelle. Our analysis reveals the kinetics of SAS-6 ring formation and demonstrates that distinct biogenesis routes can be followed to assemble a nine-fold symmetrical structure

    A hybrid polymer/ceramic/semiconductor fabrication platform for high-sensitivity fluid-compatible MEMS devices with sealed integrated electronics

    Full text link
    Active microelectromechanical systems can couple the nanomechanical domain with the electronic domain by integrating electronic sensing and actuation mechanisms into the micromechanical device. This enables very fast and sensitive measurements of force, acceleration, or the presence of biological analytes. In particular, strain sensors integrated onto MEMS cantilevers are widely used to transduce an applied force to an electrically measurable signal in applications like atomic force microscopy, mass sensing, or molecular detection. However, the high Young's moduli of traditional cantilever materials (silicon or silicon nitride) limit the thickness of the devices, and therefore the deflection sensitivity that can be obtained for a specific spring constant. Using softer materials such as polymers as the structural material of the MEMS device would overcome this problem. However, these materials are incompatible with high-temperature fabrication processes often required to fabricate high quality electronic strain sensors. We introduce a pioneering solution that seamlessly integrates the benefits of polymer MEMS technology with the remarkable sensitivity of strain sensors, even under high-temperature deposition conditions. Cantilevers made using this technology are inherently fluid compatible and have shown up to 6 times lower force noise than their conventional counterparts. We demonstrate the benefits and versatility of this polymer/ceramic/semiconductor multi-layer fabrication approach with the examples of self-sensing AFM cantilevers, and membrane surface stress sensors for biomolecule detection

    An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

    No full text
    In this work, we report on the integration of an atomic force microscope (AFM) into a helium ion microscope (HIM). The HIM is a powerful instrument, capable of imaging and machining of nanoscale structures with sub-nanometer resolution, while the AFM is a well- established versatile tool for multiparametric nanoscale characterization. Combining the two techniques opens the way for unprecedented in situ correlative analysis at the nanoscale. Nanomachining and analysis can be performed without contamination of the sample and environmental changes between processing steps. The practicality of the resulting tool lies in the complementarity of the two techniques. The AFM offers not only true 3D topography maps, something the HIM can only provide in an indirect way, but also allows for nanomechanical property mapping, as well as for electrical and magnetic characterization of the sample after focused ion beam materials modification with the HIM. The experimental setup is described and evaluated through a series of correlative experiments, demonstrating the feasibility of the integration
    corecore